

GCSE to A-Level

Transition Pack

Edexcel

Name:

Practice makes permanent, and that is especially the case in A-Level Mathematics. This transition pack will focus on the key skills learnt at KS4 that are crucial to be successful at AS-Level through to A-Level.

Chapters	Pages	Transition End of Unit Score
1. Algebraic Expressions	4-14	
2. Quadratics	15-21	
3. Equations and Inequalities	22-25	
4. Graphs and Transformations	26-27	
5. Straight Line Graphs	28-30	
6. Algebraic Methods	31	
7. Trigonometric Ratios	32-34	
8. Vectors	35-37	

1. Algebraic Expressions Simplifying Expressions
2. (a) Simplify $a^{4} \times a^{5}$

3. (a) Simplify $\left(p^{3}\right)^{2}$
(b) Simplify $\frac{45 e^{6} f^{8}}{5 e f^{2}}$

$$
\text { (b) Simplify } \frac{t^{8}}{t^{3}}
$$

(c) Write down the value of $9^{\frac{1}{2}}$
2. (a) Simplify $x^{7} \times x^{3}$
(b) Simplify $\quad\left(m^{4}\right)^{3}$
4. Simplify
(c) Simplify $\frac{36 a f^{8}}{12 a^{5} f^{2}}$

$$
z 1_{9}^{\kappa_{9} x}<\tau \quad \cdot \square
$$

$$
\begin{array}{cc}
s^{t}(\mathfrak{q}) \\
{ }_{9} d(\mathfrak{k}) & \cdot \varepsilon
\end{array}
$$

$$
\begin{aligned}
& { }_{9} \mathcal{f}_{\uparrow} \cdot v \mathcal{E}() \\
& { }_{21}{ }^{w(q)} \\
& { }_{01} x^{(\mathfrak{e})} \quad \boldsymbol{z}
\end{aligned}
$$

RAG
$\varepsilon(จ)$
${ }_{9} f_{s}{ }^{2} 6$ (q)
${ }_{6} p$ (ع) $\quad \quad^{4}$

1. Algebraic Expressions Simplifying Fractions

1 Write as sums of powers of x.

Support Video

c $\quad x^{-4}\left(x^{2}+\frac{1}{x^{3}}\right)$
d $\frac{6 x^{5}+3 x^{4}}{3 x^{2}} \quad$ e $\frac{5 x^{5}+20 x^{4}}{10 x^{2}} \quad$ f $\frac{7 x^{5}-5 x^{4}}{2 x^{6}}$
a $\frac{x^{5}+1}{x^{2}}$
b $\quad x^{2}\left(x-\frac{1}{x}\right)$

1. Algebraic Expressions

 Expanding Double Brackets1 The diagram shows a rectangle.
Write down an expression, in terms of x, for the area of the rectangle.
Show that the area of the rectangle can be written as $21 x^{2}-35 x$

Support Video

$7 x$

2 Expand and simplify.
a $\quad(x+4)(x+5)$
b $\quad(x+7)(x+3)$
c $\quad(x+7)(x-2)$
d $(x+5)(x-5)$
e $\quad(2 x+3)(x-1)$
f $(3 x-2)(2 x+1)$
g $\quad(5 x-3)(2 x-5)$
h $(3 x-2)(7+4 x)$
i $\quad(3 x+4 y)(5 y+6 x)$
j $\quad(x+5)^{2}$
k $(2 x-7)^{2}$
l $(4 x-3 y)^{2}$

3 Expand and simplify $(x+3)^{2}+(x-4)^{2}$

4 Expand and simplify.
a

$$
\left(x+\frac{1}{x}\right)\left(x-\frac{2}{x}\right)
$$

b $\quad\left(x+\frac{1}{x}\right)^{2}$

$$
\begin{aligned}
& \frac{\tau^{x}}{I}+\tau+{ }_{\tau} x \quad \mathbf{q} \\
& \frac{\tau^{x}}{\tau}-1-{ }_{\tau} x \quad \text { в } \\
& \varsigma \succsim+x_{\imath}-{ }_{\tau}^{x} \mathcal{\varepsilon} \\
& \begin{array}{rr}
{ }_{\tau}{ }^{1} 6+\kappa x_{\downarrow} \tau-{ }_{\tau} x_{9} \mathrm{I} & \mathbf{I} \\
\varsigma \tau+x_{0} \mathrm{I}+{ }_{\tau} x & \mathbf{I} \\
\left\llcorner\mathrm{I}-x_{\mathcal{E}} \mathrm{I}+{ }_{\tau}{ }^{x} \mathcal{I}\right. & \mathbf{q} \\
\tau-x-{ }_{\tau}{ }^{x 9} & \mathbf{J} \\
\varsigma \tau-{ }_{\tau} x & \mathbf{p} \\
\mathrm{I} \tau+x_{0 \mathrm{I}}+{ }_{\tau} x & \mathbf{q}
\end{array} \\
& 6 t+x_{8} \tau-{ }_{\tau}{ }^{x} \downarrow \quad \text { Y } \\
& { }^{K_{0}} 0 \tau+\kappa_{x} \varepsilon \varepsilon+{ }_{\tau} x_{8} \text { ! } \\
& \varsigma \mathrm{I}+x_{\mathrm{I} \varepsilon}-{ }_{\tau}{ }^{x} \mathrm{I} \quad \text { ठ } \\
& \mathcal{E}-x+{ }_{\tau}^{x} \mathcal{\partial} \quad \text { จ } \\
& \dagger \mathrm{I}-x_{\mathrm{S}}+{ }_{\tau} x \quad \mathbf{~} \\
& 0 \tau+x_{6}+{ }_{\tau} x \quad \text { b } \quad \boldsymbol{z} \\
& x \varsigma \mathcal{E}-{ }_{\tau} x_{\mathrm{I} Z}=(\mathcal{S}-x \mathcal{E})_{\mathcal{L}} \quad \mathbf{I}
\end{aligned}
$$

1. Algebraic Expressions Expanding Trinomials

1 Expand and simplify.
a $3(x-2)(x+4)$
c $\quad y(x-3)(x+2)$
e $y(x-3 y+3)(2 x+1)$
g $(x-3)(x+2)(2 x-7)$
i $(x-3)(x-4)(x+5)$
k $(x-3 y)^{3}$

$$
\begin{aligned}
& t-x_{Z}-{ }_{\tau} x_{8}+{ }_{\varepsilon} x_{9} \quad! \\
& 8 z+x_{0 t}-\tau^{x} \mathrm{II}-\varepsilon^{x} Z \mathrm{I} \quad \boldsymbol{\varphi} \\
& x_{6}-\tau^{x 81}-\tau^{〔} x \varepsilon-\varepsilon_{\varepsilon}^{x} \tau 1 \text { J } \\
& x_{-} \tau^{x} \tau+\varepsilon^{x 8} \quad \text { p } \\
& x \mathrm{SI}+{ }_{\tau} x 8-{ }_{\varepsilon} \quad \mathbf{q}
\end{aligned}
$$

Support Video

Video title wrong but it is correct
b $\quad x(x-5)(x-3)$
d $\quad x(2 x+1)(4 x-1)$
f $3 x(2 x-y-3)(2 x+y)$
h $(3 x-2)(7+4 x)(x-2)$
j $\quad(3 x-2)(2 x+2)(x+1)$
l $(2 x-5 y)^{3}$
$\varepsilon^{K} L \tau-\tau^{\{x} L Z+\kappa_{\tau} \chi_{6}-\varepsilon^{x} \quad$ भ
$09+x \varepsilon \tau-\tau_{\tau}^{x}-\varepsilon_{\varepsilon}^{x} \quad$!
चt $+x$ ¢ $-\tau^{x} 6-\varepsilon^{x \tau} \quad$ s

$\kappa_{9}-\mathcal{K x}-\kappa_{\tau} x \quad$ o
$\mathrm{tz}-x_{9}+{ }_{\tau} \boldsymbol{x}_{\varepsilon} \quad$ в
-Sy!du!s pue puedxa

1．Algebraic Expressions Factorising Quadratics

1 Factorise
a $\quad x^{2}+7 x+12$
b $\quad x^{2}+5 x-14$
c $\quad x^{2}-11 x+30$
d $x^{2}-5 x-24$
e $\quad x^{2}-7 x-18$
f $x^{2}+x-20$
g $\quad x^{2}-3 x-40$
h $x^{2}+3 x-28$

2 Factorise fully
a $y^{2}-100$
c $4 x^{2}-81 y^{2}$
b $36 x^{2}-49 y^{2}$
d $\quad 18 a^{2}-200 b^{2} c^{2}$

3 Factorise fully
a $\quad 2 x^{2}+x-3$
b $6 x^{2}+17 x+5$
c $\quad 2 x^{2}+7 x+3$
d $9 x^{2}-15 x+4$
e $\quad 10 x^{2}+21 x+9$
f $12 x^{2}-38 x+20$

$\begin{aligned} & \left(\varsigma-x_{\mathcal{Z}}\right)\left(\mathrm{z}-x_{\mathcal{E}}\right) 乙 \\ & \left(\mathrm{t}-x_{\mathcal{E}}\right)\left(\mathrm{I}-x_{\mathcal{E}}\right) \\ & \left(\mathrm{s}+x_{\mathcal{Z}}\right)\left(\mathrm{I}+x_{\mathcal{E}}\right) \end{aligned}$	q
$\begin{array}{r} \left(s q 0 I^{\mathrm{I}}+p_{\mathcal{E})\left(s_{0} \mathrm{I}-p_{\mathcal{E}}\right) Z}^{\left(\kappa_{L}+x_{9}\right)\left(\kappa_{L}-x_{9}\right)}\right. \end{array}$	q
$(t-x)(L+x)$	4
$(\square-x)(\varsigma+x)$	J
$(\varepsilon+x)(8-x)$	p
$(\tau-x)(L+x)$	q

$$
\begin{array}{ccc}
(\mathcal{\varepsilon}+x 乙)(\mathcal{\varepsilon}+x \varsigma) & \text { ə } & \\
(\mathcal{\varepsilon}+x)(\mathrm{I}+x 乙) & \text { o } & \\
(\mathcal{\varepsilon}+x \bar{z})(\mathrm{I}-x) & \text { b } & \mathcal{\varepsilon}
\end{array}
$$

$$
\begin{array}{rll}
\left(\kappa_{6}+x_{Z}\right)\left(\varkappa_{6}-x_{Z}\right) & \mathbf{v} & \\
(0 \mathrm{I}+\kappa)(0 \mathrm{I}-\Omega) & \mathbf{v} & \boldsymbol{Z}
\end{array}
$$

$$
\begin{array}{cc}
(t-x)(L+x) & \mathbf{Y} \\
(t-x)(\varsigma+x) & \mathbf{J} \\
(\mathcal{\varepsilon}+x)(8-x) & \mathbf{p} \\
(\tau-x)(L+x) & \mathbf{q}
\end{array}
$$

$$
(\varsigma+x)(8-x) \quad \mathbf{\delta}
$$

$$
(\tau+x)(6-x)
$$

$$
(9-x)(\varsigma-x) \quad \bigcirc
$$

$$
(\downarrow+x)(\varepsilon+x) \quad \text { e } \quad \mathbf{I}
$$

1. Algebraic Expressions Simplifying Indices

1 Simplify.

Support Video

a $\frac{3 x^{2} \times x^{3}}{2 x^{2}}$
b $\frac{10 x^{5}}{2 x^{2} \times x}$
c $\frac{3 x \times 2 x^{3}}{2 x^{3}}$
d $\frac{7 x^{3} y^{2}}{14 x^{5} y}$
e $\frac{y^{2}}{y^{\frac{1}{2}} \times y}$
f $\frac{c^{\frac{1}{2}}}{c^{2} \times c^{\frac{3}{2}}}$
g $\frac{\left(2 x^{2}\right)^{3}}{4 x^{0}}$
h $\frac{x^{\frac{1}{2}} \times x^{\frac{3}{2}}}{x^{-2} \times x^{3}}$

2 Write the following as a single power of x.
a $\frac{1}{x}$
b $\frac{1}{x^{7}}$
c $\sqrt[4]{x}$
d $\sqrt[5]{x^{2}}$
e $\frac{1}{\sqrt[3]{x}}$
f $\frac{1}{\sqrt[3]{x^{2}}}$

3 Write the following without negative or fractional powers.
a $\quad x^{-3}$
b x^{0}
c $x^{\frac{1}{5}}$
d $x^{\frac{2}{5}}$
e $x^{-\frac{1}{2}}$
f $x^{-\frac{3}{4}}$

$$
\begin{aligned}
& \frac{\varepsilon^{x} f_{t}}{I} \quad J \\
& \xlongequal[I]{x} \quad 0 \\
& z^{x} s \quad \mathbf{p} \\
& x 5 \quad 0 \\
& \text { I } \quad \mathbf{q} \\
& \frac{\varepsilon^{x}}{\mathrm{I}} \quad \text { e } \quad \mathcal{E} \\
& \frac{\varepsilon}{z}^{x} \quad \mathbf{J} \\
& \underline{ \pm}^{x} \quad \boldsymbol{v} \\
& \frac{\varepsilon}{1}^{x} \quad \text { ə } \\
& \frac{\varsigma}{2}^{x} \quad \mathbf{p} \\
& L^{x} \quad \mathbf{q} \\
& { }_{1}-x \quad \boldsymbol{Z} \quad \boldsymbol{Z}
\end{aligned}
$$

x	Y	$9^{x} 2$	8
ε^{-}	J	${ }_{1}{ }_{1} K$	$\boldsymbol{\partial}$
$\frac{z^{x Z}}{K}$	p	$x \varepsilon$	ग
$\tau^{x} ¢$	q	$\frac{\tau}{\varepsilon^{x} \varepsilon}$	\boldsymbol{E}

1. Algebraic Expressions Simplifying Surds

1 Simplify.
a $\sqrt{45}$
c $\sqrt{48}$
e $\sqrt{300}$
g $\sqrt{72}$
b $\sqrt{125}$
d $\sqrt{175}$
f $\sqrt{28}$
h $\sqrt{162}$

2 Simplify.
a $\sqrt{72}+\sqrt{162}$
b $\sqrt{45}-2 \sqrt{5}$
c $\sqrt{50}-\sqrt{8}$
e $2 \sqrt{28}+\sqrt{28}$
d $\sqrt{75}-\sqrt{48}$
f $2 \sqrt{12}-\sqrt{12}+\sqrt{27}$

RAG

1. Algebraic Expressions Brackets and Surds

Support Video

1 Expand and simplify.
a $\quad(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})$
b $\quad(3+\sqrt{3})(5-\sqrt{12})$
c $\quad(4-\sqrt{5})(\sqrt{45}+2)$
d $(5+\sqrt{2})(6-\sqrt{8})$

2 Expand and simplify $(\sqrt{x}+\sqrt{y})(\sqrt{x}-\sqrt{y})$
3 Work out the value of $(\sqrt{2}+\sqrt{8})^{2}$
4 Expand $(1+\sqrt{2})(3-\sqrt{2})$
Give your answer in the form $a+b \sqrt{2}$ where a and b are integers.

$$
\tau \Omega \tau+1 \quad \downarrow
$$

$81 \quad \varepsilon$
κ_{-x}
Z
RAG

$$
\begin{aligned}
& \text { £-6 } \mathbf{q} \\
& \text { I- } \quad \text { I }
\end{aligned}
$$

1. Algebraic Expressions Rationalising the Denominator

1 Rationalise and simplify, if possible.
a $\frac{1}{\sqrt{5}}$
b $\frac{1}{\sqrt{11}}$
c $\frac{2}{\sqrt{7}}$
d $\frac{2}{\sqrt{8}}$
e $\frac{2}{\sqrt{2}}$
f $\frac{5}{\sqrt{5}}$
g $\quad \frac{\sqrt{8}}{\sqrt{24}}$
h $\frac{\sqrt{5}}{\sqrt{45}}$

2 Rationalise and simplify.
a $\frac{1}{3-\sqrt{5}}$
b $\frac{2}{4+\sqrt{3}}$
c $\frac{6}{5-\sqrt{2}}$

3 Rationalise and simplify, if possible.
a $\frac{1}{\sqrt{9}-\sqrt{8}}$
b $\frac{1}{\sqrt{x}-\sqrt{y}}$
$\frac{\kappa-x}{\{\mathcal{K}+x} \quad$ q $\frac{\varepsilon \Sigma}{(\tau \mu+\rho) 9} \quad 0 \quad \frac{\varepsilon L}{(\varepsilon \mu-\dagger) \tau} \quad$ q

$\frac{\varepsilon}{\tau}$	4	$\frac{\varepsilon}{\varepsilon \mu}$	\%
S	J	2	э
\underline{z}	p	L	ง
2	p	L^2	\bigcirc
II	q	$\frac{\mathrm{S}}{\mathrm{S}}$	E

$\succsim \jmath \tau+\varepsilon$: ε
$\frac{t}{S+\varepsilon}: \quad \tau$
$\frac{\varepsilon}{\varepsilon \mu}:$
〕
$\frac{L}{5 \lambda} \quad 0$

2. Quadratics

Solving Quadratics - Factorising

Support Video

a $\quad 6 x^{2}+4 x=0$
b $28 x^{2}-21 x=0$
c $\quad x^{2}+7 x+10=0$
d $x^{2}-5 x+6=0$
e $\quad x^{2}-3 x-4=0$
f $x^{2}+3 x-10=0$
g $\quad x^{2}-10 x+24=0$
h $\quad x^{2}-36=0$
i $\quad x^{2}+3 x-28=0$
k $\quad 2 x^{2}-7 x-4=0$
j $\quad x^{2}-6 x+9=0$
l $3 x^{2}-13 x-10=0$

2 Solve
a $\quad x^{2}-3 x=10$
b $\quad x^{2}-3=2 x$
c $\quad x^{2}+5 x=24$
d $x^{2}-42=x$
e $\quad x(x+2)=2 x+25$
f $\quad x^{2}-30=3 x-2$
g $\quad x(3 x+1)=x^{2}+15$
h $3 x(x-1)=2(x+1)$

2. Quadratics

Solving Quadratics - Quadratic Formula

1 Solve, giving your solutions in surd form.

Support Video

a $\quad 3 x^{2}+6 x+2=0$
b $\quad 2 x^{2}-4 x-7=0$

2 Solve the equation $x^{2}-7 x+2=0$
Give your solutions in the form $\frac{a \pm \sqrt{b}}{c}$, whe
3 Solve $10 x^{2}+3 x+3=5$
Give your solution in surd form.

4 Choose an appropriate method to solve each quadratic equation, giving your answer in surd form when necessary.
a $4 x(x-1)=3 x-2$
b $\quad 10=(x+1)^{2}$
c $x(3 x-1)=10$

$$
\frac{0 \tau}{68 \Upsilon^{-\varepsilon^{-}}}=x \text {.10 } \frac{0 \tau}{68 \Upsilon^{+\varepsilon^{-}}}=x \quad \varepsilon
$$

$$
\frac{\tau}{\underline{I t} \Gamma-L}=x \text {.10 } \frac{\tau}{\frac{\mathrm{I} \tau}{} \text { + }+L}=x
$$

RAG

$$
\frac{\tau}{\tau \varsigma \varepsilon}-\mathrm{I}=x \text {.10 } \frac{\tau}{\tau \varsigma^{\varepsilon}}+\mathrm{I}=x \quad \text { q } \quad \frac{\varepsilon}{\varepsilon}-\mathrm{I}^{-}=x \text { 10 } \frac{\varepsilon}{\varepsilon \Omega}+\mathrm{I}^{-}=x \quad \text { b } \quad \mathbf{I}
$$

$$
\begin{aligned}
& \tau=x .10 \frac{\varepsilon}{\tau} \mathrm{I}^{-}=x \quad \text {, } \\
& \underline{0} \mathcal{I}-\mathrm{I}^{-=x} \text {.10 } \underline{01} \mathcal{N}+\mathrm{I}^{-=x} \quad \mathbf{q} \\
& \frac{8}{\underline{L I}-L}=x \text {.10 } \frac{8}{\underline{L I}{ }^{\Lambda}+L}=x \quad \text { er }
\end{aligned}
$$

2. Quadratics Completing the square

Support Video
OTY
Ory

1 Complete the square for the following expressions:
a $\quad x^{2}+8 x$
b $x^{2}-10 x$
c $\quad x^{2}-x$
d $3 x^{2}-15 x$
e $12 x-2 x^{2}$

$$
8 \mathrm{I}+{ }_{\tau}(\mathcal{E}-x) \tau-\quad \boldsymbol{p} \quad \frac{\hbar}{\varsigma L}-{\underset{\tau}{ }}^{\left(\frac{\tau}{\varsigma}-x\right) \mathcal{E} \quad \mathbf{p}}
$$

$\frac{t}{\mathrm{I}}-{ }_{\tau}\left(\frac{\tau}{\mathrm{I}}-x\right)$ ง
$\varsigma\left\ulcorner-{ }_{乙}(\varsigma-x) \quad \mathbf{q}\right.$

$$
9 \mathrm{I}-{ }_{\tau}(\mathrm{t}+x) \quad \mathbf{e}
$$

2. Quadratics

Solving by completing the square

1 Solve by completing the square.
a $\quad x^{2}-4 x-3=0$
b $x^{2}-10 x+4=0$
c $\quad x^{2}+8 x-5=0$
d $x^{2}-2 x-6=0$
e $2 x^{2}+8 x-5=0$
f $5 x^{2}+3 x-4=0$

2 Solve by completing the square.
a $\quad(x-4)(x+2)=5$
b $2 x^{2}+6 x-7=0$
c $x^{2}-5 x+3=0$

$$
\begin{aligned}
& \frac{\tau}{\varepsilon \underline{\varepsilon} \mu-\varsigma}=x_{10} \frac{\tau}{\varepsilon \| \Gamma+\varsigma}=x \quad 0
\end{aligned}
$$

2. Quadratics Substituting into functions
3. f and g are functions such that

Support Video

Video title wrong but it is correct

$$
\mathrm{f}(x)=\frac{2}{x^{2}} \quad \text { and } \quad \mathrm{g}(x)=4 x^{2}
$$

(a) Find $f(-5)$
(b) Find the value of x for which $\mathrm{f}(x)=\mathrm{g}(x)$.
2. The function $\mathrm{f}(x)=3 x^{2}-2 x-8$

Express $\mathrm{f}(x+2)$ in the form $a x^{2}+b x$

$$
\begin{aligned}
& x_{0} \mathrm{I}+{ }_{\tau^{x} \mathcal{E}} \quad \tau \\
& \mathrm{I} \mp=x(q)
\end{aligned}
$$

$\frac{\varsigma \tau}{\tau}(p) \cdot \mathrm{I}$

2. Quadratics

Sketching Quadratics

1 Sketch the graph of $y=-x^{2}$

2 Sketch each graph, labelling where the curve crosses the axes.
a $y=(x+2)(x-1)$
b $\quad y=x(x-3)$
c $\quad y=(x+1)(x+5)$

3 Sketch each graph, labelling where the curve crosses the axes.
a $y=x^{2}-x-6$
b $\quad y=x^{2}-5 x+4$
c $\quad y=x^{2}-4$
d $y=x^{2}+4 x$
e $y=9-x^{2}$
f $\quad y=x^{2}+2 x-3$

J

ग

ग
ə

q
E

q
E

3．Equations and Inequalities
Simultaneous Equations

Solve these simultaneous equations．
$1 \quad 4 x+y=8$

$$
x+y=5
$$

$23 x+y=7$

$$
3 x+2 y=5
$$

$3 \quad 4 x+y=3$

$$
3 x-y=11
$$

$4 \quad 3 x+4 y=7$
$x-4 y=5$
$5 \quad 2 x+y=11$

$$
x-3 y=9
$$

$6 \quad 2 x+3 y=11$

$$
3 x+2 y=4
$$

$$
\begin{aligned}
& \mathcal{E}-=\mathcal{K}^{\prime} L=x \quad L \\
& \mathcal{S}=\kappa^{\prime} 乙-=x \quad 9 \\
& \mathrm{I}^{-}=\kappa^{\prime} 9=x \quad \mathrm{~S} \\
& \frac{\tau}{1}-=\kappa^{\prime} \mathcal{E}=x \quad \text { t } \\
& \varsigma-=\kappa^{〔} 乙=x \quad \mathcal{E} \\
& \boldsymbol{Z}-=\kappa^{\prime} \dot{\varepsilon}=x \quad \boldsymbol{Z} \\
& \boldsymbol{t}=\text { K' }^{\prime} \mathrm{I}=\boldsymbol{x} \quad \mathbf{I}
\end{aligned}
$$

3. Equations and Inequalities Non-Linear Simultaneous Equations

Support Video

Solve these simultaneous equations.
$1 x y=9$ and $y=x$
$3 x y-3=16$ and $x-19 y=0$
$2 x^{2}+y^{2}=50$ and $y=x$
$4 x-2 y=3$ and $(x-4)^{2}+(y-3)^{2}=25$

$$
\mathcal{E}=K^{\prime} 6=x \quad \text { pue } \quad \mathrm{I}-=K^{\prime} \mathrm{I}=x \quad \text { t }
$$

$$
\mathrm{I}=K \cdot 6 \mathrm{I}=x \quad \text { pue } \quad \mathrm{I}-=K \cdot 6 \mathrm{I}-=x \quad \mathcal{E}
$$

$$
\varsigma=K ' \varsigma=x \quad \text { pue } \quad \varsigma-=K \quad \varsigma-=x \quad \boldsymbol{Z}
$$

$$
\mathcal{E}=K^{\prime} \mathcal{E}=x \quad \text { pue } \quad \mathcal{E}-=K^{\prime} \mathcal{E}-=x \quad \mathbf{I}
$$

3. Equations and Inequalities Linear Inequalities

1 Solve these inequalities
a $\quad 4 x>16$
b $\quad 5 x-7 \leq 3$
c $\quad 1 \geq 3 x+4$
d $\quad 5-2 x<12$
e $\quad \frac{x}{2} \geq 5$
f $8<3-\frac{x}{3}$

2 Solve these inequalities
a $\quad \frac{x}{5}<-4$
b $\quad 10 \geq 2 x+3$
c $\quad 7-3 x>-5$

3 Solve
a $\quad 2-4 x \geq 18$
b $\quad 3 \leq 7 x+10<45$
c $\quad 6-2 x \geq 4$
d $4 x+17<2-x$
e $\quad 4-5 x<-3 x$
f $-4 x \geq 24$

4 Solve these inequalities
a $\quad 3 t+1<t+6$
b $\quad 2(3 n-1) \geq n+5$

5 Solve
a
$3(2-x)>2(4-x)+4$
b $\quad 5(4-x)>3(5-x)+2$

$$
\frac{\tau}{\varepsilon}>x \quad \mathbf{q} \quad 9^{->x} \quad \text { b } \quad \mathbf{乌}
$$

$$
\frac{\varsigma}{L}<u \quad \mathbf{q}
$$

$$
\frac{\tau}{\varsigma}>t \quad \text { e } \quad t
$$

$9->x$	J	$\tau<x$	∂	$\mathcal{E}->x$	p	
I $>x$	J	$\varsigma>x>\mathrm{I}-$	q	$\square>x$	\boldsymbol{v}	\mathcal{E}
$t>x$	\boldsymbol{J}	$\varsigma \cdot \varepsilon>x$	q	$0 z^{->}$	E	τ
$\varsigma \mathrm{I}^{-}>x$	J	0I＜$<$	$\boldsymbol{\partial}$	$\frac{\tau}{L}-<x$	p	
I－5x	\bigcirc	てゝ x	q	$t<x$	v	I

4. Graphs and Transformations Translating Quadratics

1 The graph shows the function $y=\mathrm{f}(x)$.
Copy the graph and on the same axes sketch and label the graphs of $y=\mathrm{f}(x)+4$ and $y=\mathrm{f}(x+2)$.

2 The graph shows the function $y=\mathrm{f}(x)$.
Copy the graph and on the same axes sketch the graph of $y=\mathrm{f}(x-5)$.

4. Graphs and Transformations Stretching Quadratics

1

Figure 1
Figure 1 shows a sketch of the curve C with equation $y=\mathrm{f}(x)$.
The curve C passes through the origin and through $(6,0)$.
The curve C has a minimum at the point $(3,-1)$.
On separate diagrams, sketch the curve with equation
(a) $y=\mathrm{f}(2 x)$,
(b) $y=-\mathrm{f}(x)$,

On each diagram show the coordinates of any points where the curve intersects the x-axis and of any minimum or maximum points.

RAG

5. Straight Line Graphs

Finding the gradient from 2 points (1)

Support Video

1 Work out the gradient of the line joining each pair of coordinates.
a $(4,5),(10,17)$
b $(0,6),(-4,8)$
c $(-1,-7),(5,23)$
d $(3,10),(4,7)$

$$
\begin{array}{llll}
\mathcal{E}-=u & \mathbf{p} & \mathcal{S}=u & \mathbf{o} \\
\frac{\tau}{\mathrm{I}}-=u & \mathbf{q} & \tau=u & \mathbf{e}
\end{array}
$$

5. Straight Line Graphs

Finding the the equation of a line

1 Find the equation of the line with:
a) gradient 2 that passes through the point $(1,-1)$.
b) gradient -0.5 that passes through the point $(10,1)$.
c) gradient 5 that passes through the point $(2,8)$.
d) gradient -3 that passes through the point $(-3,28)$.

$$
\begin{array}{llll}
6 \mathrm{I}+x \mathcal{E}-=\kappa & \mathbf{p} & \tau-x \mathcal{S}=\kappa & \mathbf{v} \\
9+x \frac{\tau}{\mathrm{I}}-=\kappa & \mathbf{q} & \mathcal{E}-x \mathcal{Z}=\kappa & \mathbf{v}
\end{array}
$$

5. Straight Line Graphs Perpendicular Lines and Parallel Lines

Support Video

1 Work out whether these pairs of lines are parallel, perpendicular or neither.
a $y=2 x+3$
$y=2 x-7$
b $\quad \begin{aligned} & y=3 x \\ & 2 x+y-3=0\end{aligned}$
c $\quad y=4 x-3$
e $\quad \begin{aligned} & 2 x+5 y-1=0 \\ & y=2 x+7\end{aligned}$
f $\quad \begin{aligned} & 2 x-y=6 \\ & \\ & 6 x-3 y+3=0\end{aligned}$
d $3 x-y+5=0$
$x+3 y=1$
$4 y+x=2$

2 Find the equation of the line parallel to each of the given lines and which passes through each of the given points.
a $y=3 x+1 \quad(3,2)$
b $y=3-2 x$
c $\quad 2 x+4 y+3=0 \quad(6,-3)$
d $2 y-3 x+2=0$
$(8,20)$

$$
\begin{array}{ll}
8+x \frac{\tau}{\varepsilon}=\kappa & \mathbf{p} \\
\varsigma+x \chi^{-}=\kappa & \mathbf{q}
\end{array}
$$

๗๖ц!

	J	.. $2 \downarrow!$ ¢	ə
	ग	.әบ! ${ }^{\text {a }}$	q

$x \frac{\tau}{\mathrm{I}}-=\Lambda \quad$ ग
$\begin{array}{lll}\left\llcorner-x_{\mathcal{E}}=\Lambda\right. & \mathbf{z} & \boldsymbol{z}\end{array}$
RAG
 PTIT.IE $_{\text {P }} \quad \boldsymbol{e} \quad \mathbf{I}$
6. Algebraic Methods

Simplifying Algebraic Fractions

1 Simplify the algebraic fractions.
a $\frac{2 x^{2}+4 x}{x^{2}-x}$
b $\frac{x^{2}+3 x}{x^{2}+2 x-3}$
c $\frac{x^{2}-2 x-8}{x^{2}-4 x}$
d $\frac{x^{2}-5 x}{x^{2}-25}$
e $\frac{x^{2}-x-12}{x^{2}-4 x}$
f $\frac{2 x^{2}+14 x}{2 x^{2}+4 x-70}$

2 Simplify
a $\frac{9 x^{2}-16}{3 x^{2}+17 x-28}$
b $\frac{2 x^{2}-7 x-15}{3 x^{2}-17 x+10}$
c $\frac{4-25 x^{2}}{10 x^{2}-11 x-6}$
d $\frac{6 x^{2}-x-1}{2 x^{2}+7 x-4}$

$t+x$		$\mathcal{E}-x_{Z}$	$\boldsymbol{0}$	
$\mathrm{I}+x \mathcal{E}$	p	$x_{\varsigma}-乙$		
$\tau-x \mathcal{E}$	q	$L+x$	k	τ
$\mathcal{E}+x_{\mathcal{Z}}$		$t+x \mathcal{E}$		
$\varsigma-x$	J	x	$\boldsymbol{\partial}$	
x		$\varepsilon+x$		
$\bigcirc+x$	p	x	$\boldsymbol{}$	
x		$\overline{Z+x}$		
$\mathrm{I}-x$	q	$\mathrm{I}-x$	v	
x		$\overline{(z+x) \tau}$		I

7．Trigonometry
 The Cosine Rule

Work out the length of the unknown side in each triangle．

Support Video

Give your answers correct to 3 significant figures．
a

b

Calculate the angles labelled θ in each triangle．
Give your answer correct to 1 decimal place．
a

b

a Work out the length of WY． Give your answer correct to 3 significant figures．
b Work out the size of angle WXY． Give your answer correct to 1 decimal place．

．0．9L	q	แง $L \cdot \varepsilon$ I	v	Z
06.25	q	－でで	v	I
		S．IOMSUV		
แ๐ 97＊6	q	แ๐ $9 \checkmark^{*} 9$	E	9

7. Trigonometry

The Sine Rule
Cosine, Sine Rule, Area
1 Find the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.
a

b

1 Calculate the angles labelled θ in each triangle.
Give your answer correct to 1 decimal place.
a

b

RAG

7. Trigonometry

Area of Triangle
1 Work out the area of each triangle.
Give your answers correct to 3 significant figures.

a

b

2 The area of triangle XYZ is $13.3 \mathrm{~cm}^{2}$.
Work out the length of XZ.

Hint:

Rearrange the formula to make a side the subject.

RAG
8. Vectors

Adding Vectors

1

M is the midpoint of $B C$.
Q is the midpoint of $A M$.

$$
\overrightarrow{A P}=\mathbf{a} \quad \overrightarrow{P C}=2 \mathbf{a} \quad \overrightarrow{C M}=\mathbf{b} \quad \overrightarrow{P Q}=\mathbf{c}
$$

(a) Find $\overrightarrow{A M}$ in terms of \mathbf{a} and \mathbf{b}.
(b) Find $\overrightarrow{Q B}$ in terms of \mathbf{c}.

Diagram NOT accurately drawn
8. Vectors

Adding Vectors Continued

$A B C D$ is a parallelogram.
The diagonals of the parallelogram intersect at O.
$\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$
(a) Find, in terms of \mathbf{b}, the vector $\overrightarrow{D B}$.
(b) Find, in terms of \mathbf{a} and \mathbf{b}, the vector $\overrightarrow{A B}$.
(c) Find, in terms of \mathbf{a} and \mathbf{b}, the vector $\overrightarrow{A D}$.

$$
\begin{equation*}
\mathbf{q}_{-1} \mathbf{v}_{-} \tag{0}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{v}_{-\mathbf{q}} \tag{q}
\end{equation*}
$$

$\mathbf{v}_{-} \mathbf{q}$
RAG
(b) I

8. Vectors

 Vectors and midpoints1

$O B P A$ is a quadrilateral.
$\overrightarrow{O A}=6 \mathbf{a}$
$\overrightarrow{O B}=4 \mathbf{b}$
$\overrightarrow{B P}=4 \mathbf{a}-\mathbf{b}$
Y is the point on $A P$ such that $A Y: Y P=2: 1$
Show that $\overrightarrow{O Y}$ is parallel to the vector $7 \mathbf{a}+3 \mathbf{b}$

